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By using the artifice of dividing space into two parts by means of a plane perpendicular to the internuclear axis and passing 
through its midpoint, it is shown that there is possible a division of a two-configuration two-electron wave function into two 
orthogonal parts each of which has optimum properties associated with the plane intuitively corresponding to the names 
"ionic" and "atomic." The division of the density distributions for the Wang, Weinbaum and Rosen functions into ionic, 
atomic and ionic-atomic cross-term parts is considered, and it is shown that the first two parts are roughly non-bonding, 
whereas it is the last part which contributes most to the density between the nuclei in the binding region. Analysis of the 
energetic parameters also leads to this conclusion. Consequently, the term covalent seems best applied to the cross-term. 
The analysis seems to supply the need for a sound theoretical basis to the kind of empirical concept embodied in the phrases 
"ionic and covalent character" but suggests that the language needs to be modified to some extent. The method is capable 
of extension to the heteropolar bond. 

I. Introduction 
We consider in this paper the nature of the 

general idea of ionic and covalent character as 
applied to the homopolar two-electron chemical 
bond and in particular, to the specific case of the 
hydrogen molecule. The original identification3 

of the covalent bond type in this case with the 
Wang4 trial variation function of the form ^ w = 
iV{lsa(l) l5b (2) + l5b (1) U (2)} where U 
and 15b are hydrogen-like orbitals with variable 
exponents centered on atoms a and b, respectively, 
and the ionic bond type with terms of the form 
^ i = iV{lsa(l) lsa(2) + lsb (1) l5b(2)j added by 
Weinbaum5 has many theoretical drawbacks. In 
the first place it is unsatisfactory to base a rather 
general concept upon a specific quite arbitrary 
functional form. Thus the Rosen function,6 

which has ^ R = iVR{(U + A<2p<ra)(l)(l5b + v2pcrh) 
(2) +(l.?b + /i2£(Tb) (I)(Ui + ,u2£0-a)(2)} and which 
is usually discussed in terms of polarization rather 
than in terms of ionic character, is very similar 
indeed to the Weinbaum function,7 and if the con
cepts of ionic and covalent character were to have 
any general validity, then it should be possible to 
substitute the Rosen function for the Weinbaum 
function in the description. The definition of the 
concepts as given originally by Pauling is not satis
factory therefore since the definition is not inde
pendent of the original choice of the basis of 
mathematical functions used in describing the wave 
function. 

Beyond the limitation implied in this necessarily 
narrow choice of basis, there is an even more objec
tionable feature of the usual definition. Namely, 
the covalent function of Wang and the ionic terms 
added by Weinbaum are by no means orthogonal. 
This was most clearly demonstrated by Braunstein 
and Simpson89 who pointed out that the two op-
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posing concepts actually had an overlap of about 
0.95! Braunstein and Simpson tried to overcome 
this deficiency in the definition by introducing an 
"atomic" function in addition to covalent and ionic 
terms functions which were now chosen orthogonal. 
With the particular atomic function they chose, 
no consistent scheme of ionic and covalent functions 
was found. The basic trouble, as they themselves 
pointed out, was that the nature of the definition 
became very dependent upon small changes in the 
particular atomic function chosen. In other words, 
they failed to satisfy the criterion that the definition 
must be independent of the choice of basis function. 

The theoretical inadequacies, however, of the 
definitions of these concepts used hitherto must not 
be allowed to obscure the brilliantly successful 
utilization of the concepts, especially in the hands 
of Pauling. We therefore adopt the viewpoint for 
the purpose of the present paper that the concepts 
themselves are valid but only the theoretical 
foundation is at fault. It is our purpose to make 
an effort to establish a sound foundation. 

In order to remove the difficulty concerning the 
arbitrary nature of the basis, we use a natural or
bital expansion as our point of departure. In the 
development that follows, we show that the re
quirement of orthogonality follows in a natural 
way. The final picture differs in some fundamental 
respects from that originally offered by Pauling 
but nevertheless it seems clear that the essence 
of the empirically useful quantities still remains. 

II. The Natural Expansion 
If one has an arbitrary complete set of one-

electron functions, or orbitals <pi, any two-electron 
function may be expressed as an infinite sum of 
products over these orbitals in which both diagonal 
terms, <ft(l)0i(2), and non-diagonal terms, <ft-(l)-
<£j(2), (i ?£• j) appear. It is possible, however, 
to find a linear transformation of the 4>i to a new 
orthogonal set of orbitals, xi> such that no cross-
terms appear in the expansion. This latter ex
pansion is known as the natural expansion and xi 
referred to as natural orbitals for the two-
electron system. The natural expansion becomes 
more complex for poly-electronic wave functions 
and in these cases one must refer directly to the 

(8) J. Braunstein and W. T. Simpson, ibid., 23, 174 (1955). 
(9) J. Braunstein and W. T. Simpson, ibid., 23, 176 (1955). 
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first order density matrix from which it is derived 
in general. 

The natural orbital expansion10 for two electron 
systems has been shown to have a number of ad
vantages. In the first place, there is a marked 
reduction in the number of necessary configurations 
with any finite basis set. Secondly, the expansion 
truncated to some finite number of terms is a well-
defined approximation to the complete function, 
namely, that function of the particular rank in
volved having maximum overlap with the complete 
function. Thirdly, the natural expansion based on 
a complete set of functions is independent of the 
particular complete basis set chosen. Furthermore 
this independence is remarkable even when the 
basis set is not complete. Thus in both the case of 
He11 and for H2

7 it has been shown that the "oc
cupation numbers" or alternatively the coefficients 
in the natural expansion are very nearly given 
correctly for even very simple trial functions. It 
is in particular this relative independence to the 
choice of original basis and the well-defined nature 
of the truncated approximation that make the 
natural expansion a particularly suitable starting 
point for an analysis of ionic and covalent character. 

In the previous analysis7 of hydrogen molecule 
trial wave functions in terms of approximate 
natural orbitals, it was shown that the first natural 
orbital, xi> was an approximation to the SCF or
bital and was S8 in symmetry. The natural orbital 
with second highest occupation number, xt> was 
Su in symmetry, whereas the third was II, i.e., 
not axially symmetric. Now clearly the intuitive 
concept of ionic terms and covalent character 
cannot be realized in terms of a single configuration 
(the MO approximation). Nor does the concept 
involve any axial correlation such as is introduced 
with the II term. It seems logical, therefore, to 
limit the present discussion to a truncated natural 
orbital expansion containing just the first two 
configurations. Both the Wang and Weinbaum 
functions utilized by Pauling fit in this general 
category,7 but of course our point of departure is in 
principle a considerably better function than either 
of these. Whereas the Wang function has an 
expectation value of —1.139 II,12 and the Wein
baum function, —1.148 II, it seems likely that the 
best function to which our truncated expansion 
corresponds has an expectation value near -1.15H 
/ / . Most of the remaining discrepancy between 
this value and the experimental result of —1.174 
/7 lies in the angular terms.13 

We will therefore assume that we have avail
able to us the natural expansion for the hydrogen 
molecule derived from some complete basis set. 
We truncate this to two terms, renormalize to 
unity and write for our approximation to the exact 
wave function14 

* = « . , A X i ( l ) x 1 ( 2 ) - » 2
, A X 2 ( l ) x . ( 2 ) (1) 

(10) P. O. Lowdin and H. Shull, Phys. Rev., 101, 1730 (1956). 
(11) H. Shull and P. O. Lowdin, / . Chem. Phys., 30, 017 (19.59). 
(12) In this paper we use uniformly the Hartree atomic unit, de

noted H, as a unit of energy. IH = 27.21 e.v. = 627.7 kcal./mole 
(13) H. Shull, Ann. Acad. Reg. Set. Upsaliensis, 3, 65 (1959). 
(14) We deal here only with the singlet ground state. The spin 

variables are not pertinent to the development and are uniformly 
omitted. 

Since xi and X2 are orthogonal, we have the condi
tion 

B 1 -]- M2 = 1 ( 2 ) 

The coefficients, n\/l and n-ili, are both chosen 
positive. The negative sign appearing in eq. 1 
has been shown to be a necessity for the present 
case.11 

III. Atomic and Ionic Forms 
We define an atomic "form" of wave function by 

*A =iV+{«(iK2) + !»(lM2)| (3) 
a plus ionic "form" by 

*i+ = iV+|w(lM2) + z>(l)i'(2)} (4) 
and a minus ionic "form" by 

*i_ - N_ (H(1)«(2) - s(lW2)| (5) 
where u and v are arbitrary normalized space 
orbitals, and the normalization constants are given 
by 

N± = 12(1 ± SVr)I-Vi (6) 
5UV is the overlap integral between u and v, fuvdr. 
We justify the choice of names "atomic" and 
"ionic" later in the paper. It is obvious that the 
form of eq. 3 is indeed similar to that of the Heitier-
London (or Wang) function,16 whereas eq. 4 takes 
the form of the ionic terms added by Weinbaum. 
The form St>i_ does not appear in the usual treat
ments of the homopolar molecule when u and v 
are chosen symmetrically related but will appear 
with an unsymmetrical choice of u and v. We 
want to ascertain whether these forms have some 
significance in themselves irrespective of the nature 
of the functions u and v. 

To investigate this we consider that u and v are 
linear combinations of the natural orbitals xi and 
X2 introducing arbitrary parameters, a and /3, such 
that 

u — xi cos a + xi sin a (7a ) 

v = xi sin t3 - Xi cos /3 (7b) 

It follows that u and v are normalized and the 
overlap integral between them is given by 

S u v = sin (/3 - a) (8) 

From equation 8, it follows that u and v are orthog
onal if (/3 — a) = 77 7T. By proper choice of relative 
phases, we need deal only with the principal case, 
/3 — a = 0. In that case, of course, SPA, SFI+, and 
SPi- all become mutually orthogonal. 

Provided (a — /3) ^ w '2 the transformation in
verse to (7) exists and we may substitute this into 
eq. 1. Collecting terms, one obtains 

* = X A * A + X i + * , + + Xi_ * i _ (9) 

where 
XA = A7+ ( (« i ' / i + nilh) sin (a + /3) + 

(TOi1A - W2
1A) sin (a - /3) J / 2 cos 2 (a - 0) ( 10a ) 

Xi+ = N+ ((TOi1A - K„V«) cos ( a - /3)) / 2 cos2 ( a - /3) 
(10b) 

Xi_ = 1V-Kn1
1A + Jj2VO cos (a + /3)1/2 cos2 ( a - (3) 

(10c) 

For the moment let us consider the symmetrical 
case in which the coefficients of M(1)M(2) and of 
f;(l)y(2) are identical. Then Xi- must vanish. 

(15) We have referred earlier (ref. 10) to this as the («,») form. 
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The condition for the symmetrical case is therefore 
(see eq. 10c) that cos(a + /3) = 0 or (a + /3) = 
W7r + JT/2. Once again, by appropriate choice of 
phases we can always take the case n = 0. In this 
case one obtains Suv — ± cos 2a and 

XI+AA = ( £ - SUT)/(1 -£5UT) (H) 
where 

p = (wi'/s — K2
1Z1V(MI1/1 + K2

1A) 

Since 0 < p < 1 and — 1 < 5UV < + 1, it is estab
lished that the ratio Xi+/XA runs over the limits 

(p - 1)/(1 +p)< X1+AA <(p+ 1)/(1 - p) 

Summarizing, we conclude that by a choice of 
(/3 — a) in the symmetric case, functions u and v 
can be formed with any arbitrary overlap such that 
SP of eq. 1 can be expressed in the form of eq. 9 (with 
Xi- = 0 ) . In the latter form, the ratio Xi+/XA is 
a function of the arbitrarily chosen 5UV and covers 
an extensive range. In the case of the Wang 
function, for example, — 0.186 <Xi+ /XA < 5.387. 
It is clear then that there is no special importance 
to be attached to the forms of SPA or of SPi+ per se. 
In order to find a basis for discussion of ionic 
character, then, we must ascertain whether there is 
some particular choice of the transformation (7) 
which makes SPA, SPI+, and SPi- take on optimum 
characteristics associated with the intuitive con
cepts we attribute to them. 

We will consequently look for a quantitative 
property to associate with the intuitive idea 
suggested in Pauling's terminology. We will want 
an ionic function, for example, in which it is very 
probable that both electrons are simultaneously 
associated with one of the molecular centers as 
opposed to the situation in which each is asso
ciated with a different molecular center. By con
trast, the opposing concept, which Pauling refers to 
as covalent, will have these two factors reversed in 
importance. 

One might suggest as natural consequence of the 
Pauling definition that the choice in which u is 
centered upon one nucleus and v upon the other is 
of particular significance. This suggestion, how
ever, is not very fruitful since an orbital function 
on one center may be expanded in terms of a com
plete set of functions based on another center and 
there is then no way of saying what amount "be
longs" on either center. To solve the problem, we 
now turn to a study of the internal nature of SPA, 
SPI+ and SPi- as a function of a and /3. 

IV. Optimal Choice of SPA, SPI+ and SPi-

Let us consider that space is divided in half by 
a plane passing through the molecular midpoint 
and perpendicular to the molecular axis. De
noting the two regions of space thus resulting by 
L (left) and R (right), we can divide the normali
zation integral into parts depending upon whether 
both electrons are in the same half of space or in 
different halves of space. In particular 

/ * A 2 d r = 1 = , 1 A + Ix 

where 
Ax = y * A 2 dr1RdT2L + / * A ! d T l I d T ! R (12) 

and 
IA = /*A 2 dTi R dr 2 R + y* A

2 dr 1 L dr 2 L (13) 

In a similar manner, 
Ai± = / * 2 i ± driRdrsL + / # 2 i ± dTiLdT2R (14) 

h± = / * 2 i ± d T i R d T 2 R + / * 2 i ± driLdr2L (15) 

It seems intuitively obvious that, for example, 
IA and i i± are intimately associated with our 
a priori intuitive concepts of the ionic nature of the 
respective functions. Similarly AA and Ai± are 
associated with the alternant or left-right kind of 
correlation implicit in the Heitler-London wave 
function. If we now introduce the transformation 
(7) into (12-15), we can attempt to find that choice 
of a and /3 which maximizes AA, II+ and h-. We 
note in advance that it is not necessarily to be ex
pected that the same values of a and /3 which maxi
mize one of the three will also make either of the 
others a maximum as well. 

In the expressions for these quantities there ap
pear three integrals over the natural orbitals, 
Rn = /xi2drR, i?22 = /'x22drR and 

^12 = yXl»dTR 

In the homopolar case as a result of the symmetry of 
Xi and X2> Rn = R22 = 1A- The third integral is in 
general non-zero. Corresponding integrals occur 
over the left-hand side of space but are easily 
related to these three by the orthonormality of 
Xi and X2- Performing the integration and re
arranging somewhat,16 we arrive at the general 
expressions 

Ax =\ + 2K12
2 - 4K12

2. 
cos2 (a + 3) + sin2 (a - ff) ( 1 6 a ) 

1 + sin2 (a -/3) 

Zi+ = g + 2R12
2 - 4K12

2-

sin2 (a + 0) sin2 (a - 0) 
1 + sin2 (a - /3) U ' 

h- = \ + 2RV2* - 4K12
2-

cos2 (a + 0) cos2 (a - 8) . . . 
1 - sin2 (a - p) (16c> 

Maximization of eq. 16 in the above trigono
metric form is particularly simple since in each case 
the coefficient of the term — 4i?i22 is positive definite. 
Hence the optimum case is always that one in which 
this coefficient vanishes. Beg inning with A A, we 
have that cos2 (a+13) + sin2 (a — 8) = 0 and hence 
both cos2 (a + 18) = 0 and sin2 (a - /3) = 0. 
The former condition leads to a + /3 = TT'2 and the 
latter a — (3 = 0 in the principal case. Hence the 
condition for maximum A A is that a = /3 = TT/4. 

For Ji+, from eq. 16b we have that either 
sin2 (a + /S) = 0 or sin2 ( a — /?) = 0. From the 
former condition a + /3 = 0 and from the latter 
a — /3 = 0. The second condition is precisely the 
one for orthogonality. The first condition is a new 
one which we note is incompatible with the sym
metry condition. It leads to the particular choice 
that u = xi a n d v = X2 or vice versa. 

Finally we have the case of Ii-. Here either 
cos (a + /3) = 0 or cos (a - /3) = 0. The latter 
condition is, however, not permitted since in that 
case the transformation inverse to (7) does not 
exist (u = v). Hence the only remaining condi-

(16) This is recommended as a splendid exercise in trigonometric 
identities. 
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tion is that a + /J = 7r/2 which is precisely the 
symmetry condition. 

We have summarized the results in Table I. 
If we combine the two conditions a — /3 = 0 and 
a + /3 = 7r/2, we find a = /3 = TT/4 and this choice 

TABLE I 

CONDITIONS IMPOSED UPON a AND 8 BY VARIOUS POSSIBLE 
CRITERIA 

Cri ter ion Resu l t ing cond i t ions 

Orthogonality of u and v « — / 3 = 0 
Symmetry of u and » a -j- 8 = 7r/2 
^4A a maximum a + 8 = T/2 and a — /3 = 0 
/i+ a maximum a — 8 = 0 or 

a + / 3 = 0 
i i - a maximum a -\- B = T/2 

simultaneously satisfies every condition in the 
table. No other choice of a and /3 satisfies all the 
conditions, and hence this particular choice seems 
to be the most suitable one from every point of 
view. 

V. Characteristics of the Optimal Choice 
We have now reached the desired conclusion. 

Namely, by introducing new parameters in a two-
configuration natural orbital expansion, it has been 
possible to choose these so that the complete wave 
function can be expressed in the form of eq. 9 
in which each of SPA, SPI+ and SPi- has a certain opti
mum characteristic that is intuitively associated 
with the nature of the Heitler-London or the ionic 
terms, respectively. In the homopolar case, the 
rather natural symmetric case then prevails such 
that Xi- = 0. Finally, and very important, this 
parameter choice is just that one which makes u 
and v orthogonal, and hence the set SPA, SPi+ and 
^i- is orthonormal. We can conclude in this 
case then that XA2 + Xi+2 = 1, and it becomes 
proper to speak of Xi+2, for example, as the frac
tional ionic character. 

We can finally insert the values a — /3 = 7r/4 
in the respective equations to find 

u = (xi + X2)/V2; v = (» - xO/Vi (17) 
and 

*A = !x.(Dxi(2) - x2(Dx2(2)!/\/2 (18) 
*:+ = lxi(Dxi(2) + x2(l)x2(2)!/\/2 (19) 

At this point it is interesting to see how the 
present function SPA, for example, derived from the 
Wang trial function compares with the Wang func
tion itself with respect to A character. For the 
complete Wang function, we can use eq. 1 to cal
culate /Iwang defined in a manner similar to (12) 
and (14). Then 

^ W a n g = g + 2 ( M i M 2 ) 1 A R 1 ^ (20) 

where now n\ and n% refer to occupation numbers 
derived from the Wang function. By contrast 

AK = / i = 2R1J (21) 

The computation of i?12 is straightforward, using 
conventional integration techniques. In Table II 
we compare ^4wang with A A for the Wang function 
as a function of the internuclear distance. For 
the occupation numbers we have used the data of 

Eliason and Hirschfelder.17 The small errors in 
their results7 will certainly not affect those listed 
in Table II significantly. 

TABLE II 

-4 Wang AND / I A FOR THE W A N G F U N C T I O N AS A FUN'CTION OP 

THE INTERNUCLEAR DISTANCE R 

Q = ZR" Ra Rn"> Aiv„« A\ 

0.0 0.0000 0.18750 0.50000 0.87500 
1.0 0.7339 .19081 .55782 .88162 
1.5 1.2099 .19590 .62174 .89179 

1.G37 1.404^ .197Gl" .64186d .89522" 

1.75 
2.0 
2.5 
3.0 
3.5 
4.0 
4.5 
5.0 
6.0 
7.0 
8.0 
10 0 
12.0 

1.4731 
1.7976 
2.4169 
2.9916 
3.5204 
4.0274 
4.525 
5.050 
6.026 
7.014 
8.038 
10.02 

.19913 

.20269 

.21037 

.21813 

.22534 

.23158 

.23666 

.24059 

.24561 
24807 
.24919 
24986 
.24998 

.65899 

.69789 

.77468 

.84176 

.89393 

.93112 

.95610 

.97229 

.98905 
99565 
.99828 
.99972 
.99995 

.89826 

.90538 

.92074 

.93627 

.95068 

.96315 

.97331 

.98118 

.99122 
99615 
. 99838 
.99973 
.99996 

" R is the internuclear distance expressed in atomic units, 
or Bohrs, b. Ib = 0.592 A. Z is the scale factor yielding 
optimum energy for the reported R value. b R12 = _/XIX2C1TR. 
0 See eq. 20. We use the occupation number data of ref. 
17 except for entry labeled "*. d The calculated equilibrium 
case for the Wang function; occupation number data are 
from ref. 7. 

From Table II it is readily apparent how much 
more suitable SP̂  is than SPwang for describing the 
essential feature that the electrons are in different 
parts of space. At the equilibrium distance, for 
example, the Wang function normalization integral 
has a contribution of almost 36% from that part of 
six-dimensional space in which both electrons are 
on the same side of our imaginary dividing parti
tion. In our optimum function SPA, this is reduced 
to just over 10%. It now also becomes obvious 
that we do not wish to identify SPA as a "covalent" 
function since this becomes a travesty on words, 
especially as R becomes large. It seems far 
preferable for this and for other reasons developed 
below to refer to it as "atomic," and we will adhere 
to that name henceforth. 

It is not our purpose, however, to attach any 
deep significance to the quantities AA and Ji, for 
such quantities derived by use of an artifice of divid
ing space in half by an imaginary plane can have 
little fundamental meaning. Rather it is sug
gested that the self-consistency and ideal nature of 
the results would lead one to believe that there 
probably exists some more sophisticated approach 
which will lead to precisely the functions SPA and 
SPi derived here by the use of an unsophisticated 
method. Consequently we wish to deemphasize 
quantities which are primarily dependent upon the 
plane, and emphasize quantities based only on the 
functions themselves and on the natural expansion. 
Thus we turn first to look at XA2 and Xi2 for the 
Wang function as a function of R and then study 

(17) M . A. El iason and J. O. Hirschfelder , / . Chem. Phys., 30, 1397 
(1959). 
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the explicit nature of SPA, SPi in the case of three well-
known trial functions for hydrogen. 

In Table III we have gathered the coefficients in 
the square of the natural expansion of the Wang 
function as determined largely from the data of 

TABLE II I 

ATOMIC AND IONIC CHARACTER OF WANG FUNCTION AS A 

FUNCTION OF R 

q = ZR" R" XA2 X I 2 2XAXI 

0.0 0.0000 0.5361 0.4639 0.9974 
1.0 0.7339 .5758 .4242 .9885 
1.5 1.2099 .6554 .3446 .9505 

1.6376 1.404^ .67956 .32056 .93346 

1.75 
2 
2.5 
3 
3.5 
4 
4.5 
5 
6 
7 
8 
10 
12 

1.4731 
1.7976 
2.4169 
2.9916 
3.5204 
4.0274 
4.525 
5.050 

6.026 
7.014 
8.038 
10.02 

.6996 

.7441 

.8264 

.8917 

.9370 

.9654 

.9818 

.99076 

.99779 

.99951 

.999896 

.999996 
1.000000 

.3004 

.2559 

.1736 

.1083 

.0630 

.0346 

.0182 

.00924 

.00221 

.00049 

.000104 

.000004 

.000000 

.9169 

.8727 

.7575 

.6215 

.4858 

.3654 

.2672 

.1914 

.0940 

.0444 

.0204 

.004 

.000 

• See footnote a of Table I I . b 

equilibrium case calculated for the 
These data pertain to the 
Wang function. 

Eliason and Hirschfelder.17 The gradual decrease 
of ionic character to 0 as R increases and the ac
companying gradual increase of atomic character to 
unity when the exact wave function of the separated 
atoms is reached are trends to be expected from this 
approximation. The variation of the coefficients 
with R emphasizes a characteristic which is 
largely ignored in the Pauling analysis. For, 
there too, the coefficient of the ionic terms must 
drop gradually to zero as R increases leaving the 
function 100% "covalent." But the latter name is 
hardly suitable for two separated hydrogen atoms 
and it is again suggested that "atomic" might well 
be a better choice. At first sight the magnitude of 
Xi2 is very surprising. Rather than the 5% ionic 
contribution suggested by Pauling,3 at the equi
librium distance the present division leads to 32% 
ionic character for the Wang function. This would 
indeed be extraordinary if our function SPi were an 
ionic function having a high energy expectation 
value. We show below, however, that SPA and SPi 
are each almost non-bonding and the high coefficient 
then becomes more understandable. 

The last column of Table II emphasizes the fact 
that in the computation of the probability density 
distribution from a wave function of the form of 
eq. 9 there are, of course, cross-terms to be con
sidered, only one, however, in the symmetric 
case we have here. This is also important, of 
course, in computing the energy. Now the 
magnitude of the coefficient of this cross-term is 
larger at small R values than either the atomic or 
ionic coefficients and it gradually goes to zero with 
increasing R, although much more slowly than that 
of the ionic coefficient. We should like to suggest 
that it is precisely this cross-term which is most 
closely connected with the concept embodied in 

the term "covalent." We believe that the dia
grams and energy computations below support 
this contention. 

VI. Graphic Representation 
In order to acquire a better intuitive understand

ing of the nature of the three quantities SFA2, 
SPI2 and SPASPI, we have plotted these quantities in 
contour maps similar to those of Braunstein and 
Simpson.9 As abscissa we use the position of elec
tron one along the internuclear axis and as ordinate 
the position of electron two along the same axis. 
A high density set of contours to the lower left 
and upper right then is what one expects for a very 
ionic function. Similarly, high contours to the 
upper left and lower right are associated with an 
atomic distribution. There are many inadequacies 
of such a diagram; for example, they concern the 
density only along the axis which is characteristic of 
but a small part of the total density; they reflect 
the discontinuities at the nuclear positions and 
hence have strange "corners" and straight lines. 
Nevertheless it is felt that they give a reasonably 
valid intuitive picture of what is going on. 

In the accompanying figures we have given con
tour diagrams of XA2SPA2, XI2SPI2 and 2XAXISPASPI 
as well as of SP2 itself (the sum of the other three) 
for the Wang,4 Weinbaum6 and Rosen6 functions 
for the hydrogen molecule. The figures speak 
rather well for themselves once one has become 
accustomed to what they present. There are 
certain outstanding features, however, which de
serve emphasis. 

First of all, comparison of corresponding dia
grams for the three cases shows that they are re
markably similar despite the apparent differences in 
the trial functions themselves. This is a reflection 
of the contention made earlier that the natural 
orbital expansion is already nearly independent of 
basis for even very simple trial functions. Since 
the three trial functions compared here are all at 
the two configuration level,7 it can be expected 
that they will be similar in appearance. In par
ticular, the Rosen and Weinbaum functions in this 
representation are so similar as to belie a description 
of the one in terms of "polarization" and of the 
other in terms of "ionic character." 

Next, examination of Sl7A2 and SPi2 shows that they 
indeed have the characteristics associated with the 
names atomic and ionic. In the present case there 
is a close relationship between SPA2 and SPi2 since the 
respective diagrams are precisely the same but 
rotated by TT/2. The nodal lines in these diagrams 
pass roughly 0.3 of the way from one nucleus to the 
other and consequently each represents only a 
relatively small build-up of charge between the 
nuclei. One can expect that the respective func
tions are relatively non-bonding. This again 
suggests the appropriateness of the term "atomic" 
for SPA. 

Finally, examination of the cross-term is espe
cially revealing. This term is, of course, negative 
in some regions of space and positive in others (and 
zero when integrated over all of space). In particu
lar, the diagrams show that the cross-term depletes 
the density contributions of both SPA2 and ^ i 2 near 
the nuclei, in fact almost completely cancelling 
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2 = Fig. 1C.—2XAXI*A*I for the Wang trial function; 2XAXi 

0.6795. 0.9334. 
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Fig. Ib. - X I 2 ^ I 2 for the Wang trial function; Xi2 = 0.3205. 

The figures give density contours along the internuclear 
axis of the hydrogen molecule for the respective approxi
mation. Abscissa: distance of electron 1 from nucleus a (at 
O) in units of the calculated equilibrium distance for that 
trial function. Ordinate: distance of electron 2 from nu
cleus a (at 0) in units of the calculated equilibrium distance 
for that trial function. Density contours are given at 0, 
±0 .01 , ±0.04, ±0.09, ±0.16. Positive density con
tributions; zero density contribution (node); ——— 

negative density contribution. 

out the latter, while building up the density 
precisely in the middle of the bond. Because of 
electron repulsion the maximum of the positive 
contribution does not occur when both electrons are 
at the midpoint, but rather at those points where 
one electron is at a nucleus and the other is at the 

R 0 r„. R 2R 

Fig. Id.—Sf2 for the Wang function (sum of Figs. l a -c ) . 

bond midpoint.18 It seems clear that this term is 
the one instrumental in the chemical binding. 

The comparison of Wang, Weinbaum and 
Rosen functions is especially interesting for the 
binding cross-term. The positive maxima are 
definitely higher for the functions with lower en
ergy. This is at least in part due to the higher 
fractional ionic character, Xi2, for the Weinbaum and 
Rosen functions as compared to the Wang function. 
The 0.32 fractional ionic contribution in the latter 
at the calculated equilibrium parameters is in
creased to 0.38 for the Weinbaum and Rosen func
tions. There is thus just 6% more ionic character 
in the Weinbaum function than in the Wang func
tion, strangely enough precisely the increase 

(18) As Professor W. T. Simpson has pointed out, this indicates 
that the two-electron chemical bond can be regarded as a superposition 
of one-electron bonds, at least to a considerable extent. 
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0.3854. 

suggested by Pauling on the basis of the Weinbaum 
calculation. 

VII. Energetic Considerations 
To complete the analysis of the homopolar case 

we include here an analysis of the contributions to 
the energy made by the various terms in the present 
division of the Wang and Weinbaum functions. 
For the present purpose we write the molecular 
Hamiltonian as 

R 0 r„. R 2R 

Fig. 2d.—*2 for the Weinbaum function (sum of 
Figs. 2a-c). 

and 

3Ci2 
1 
R 

(25) 

5C — 3Ci T" £K-2 T* 3Ci2 (22) 

with 

3Ci and 3C2 may then be thought of as operators 
associated with a one-electon diatomic molecule 
problem, and 3Cu is an interaction operator in which 
the electron repulsion term is counteracted by a 
nuclear repulsion term taken negatively to com
pensate for its having been included both in (23) 
and in (24). Furthermore we define 

3C1 = -

JC 2 — 

1 

l 4 

- j * 

1 

f a l 

1 
r.2 

1 1 
i 4. }.. 

n,i R 

cb2 ^R 

(23) 

(24) 

Hj, A = y * A 3 C * A dr 

HM = Hn, = / * A 3 C * i dr 

Hn = / * I 3 C * I dr 

61 = y»3CiXidri; e2 = yx23CiX2dri 

(26) 

(27) 

(28) 

(29) 
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Fig. 3b.—Xi2*i2 for the Rosen function; Xi2 = 0.3765. 

Finally the electron repulsion integrals over the 
natural orbitals are defined in the usual manner. 
For example 

(12|12) = /xi( l)xi(2)-X2(l)x2(2)dndr2 (30) 
)'12 

I t is straightforward to establish tha t 
HAA = «, + £2 + [(HlIl) + (22|22)]/2 -

(12|12) - l/R (31) 
U11 = ei + e2 + [(H[U) + (22|22)]/2 + 

(12|12) - l/R (32) 
HM = tl - e2 + [(11|11) - (22|22)]/2 (33) 

with 
E = XA

2 HAA + 2XAXIHAI + X1
2H11 (34) 

The form of (31)—(33) suggests again the view
point proposed above. The natural orbital xi 
should be a bonding orbital and X2 an antibonding 

R 0 2R 

F"ig. 3d.—*2 for the Rosen function (sum of Figs. 3a-c). 

orbital. In (31) and (32), therefore, ( t i + e.) 
should lead to an essentially non-bonding situation 
whereas in (33), a negative «i, and a positive e2 

should lead to a strong binding contribution. The 
electron repulsion integrals in (31) and (32) should 
in par t cancel the negative 1 /R term and in (33) 
they should roughly cancel out altogether. 

In Table IV are gathered the parameters used 
and values of the basic integrals in terms of the 
Is functions on nucleus a and on nucleus b, denoted 
by a and b, respectively, and in Table V are listed 
the appropriate derived parameters. The param
eters used for the Wang function are those re
ported by Wang,1 9 whereas those given for the 

(19) Improved unpublished calculations by Shull and Lowdin indi
cate that better parameter values for the minimum energy of the 
Wang function are q = p = 1.64888, Z = -1.16614, R = 1.41397 
with a corresponding energy of — 1.13910H. 
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TABLE IV 

'ARAMETERS AND BASIC INTEGRALS FOR 
OP THE WANG 

Parameter or 
integral 

R" 
Zc 

g== p = ZR 
(a 
(a 
(a 
(a 
(a 
(b 
(ao 
(ao 
(ao 
(at 

b) 
- 1AA 
- 1AA 
- IAa 
- IAa 
- IAa 

a) 
b) 
a) 
b) 
b) 

aa) 
ab) 

, bb) 
ab) 

MINIMUM ENERGY 

AND WEINBAUM FUNCTIONS" 

Wang 
function 
1.403945 
1.166 
1 637 
0.686857 

.679778 

.230627 
-1 .166000 
- .598231 
- .641177 

.728750 

.440329 

.550720 

.306118 

Weinbaum 
function 
1.43032 
1.193824 
1.70755 
0.667119 

.712608 

.224249 
-1 .193824 
-0 .586052 
- 636917 

.746140 

.434082 

.552869 

.293480 

° Hartree atomic units are used throughout. t Equilib-
ium intprnuclear distancp. c Effective, nuclear rhnr&e. or 

ENERGY PARAMETERS 

TABLE V 

FOR WANG AND WEINBAUM FUNC-

TIONS AT THE EQUILIBRIUM POSITION" 

Energy 
quantity & 

Cl 

H 
( H I D 
(22 22) 
(12 12) 
1 I ^ 
HAA 
Hu 
HAI 

XA2^AA 

2XAXIHAI 

Xi2Fn 
E 

Wang 
function 

- 0 . 5 2 8 6 3 
+ .19634 

.64190 

.66486 

.16852 

.71228 
- .55971 
- .22268 
- .73644 
- .38030 
- .68738 
- .07138 
- 1 . 1 3 9 0 5 

Weinbaum 
function 

- 0 . 5 4 0 1 2 
+ .18762 

.65166 

.67522 

.17413 

.69914 
- .56234 
- .21407 
- .73951 
- .34561 
- .71982 
- .08250 
- 1 . 1 4 7 9 4 

° Hartree atomic units are used throughout. * See eq. 
26-34 in text for definition of symbols. 

scale parameter. 

Weinbaum function are improved values based on 
unpublished calculations by Shull and Lflwdin. 
The integral values were recalculated explicitly 
by the author for the present work by standard 
procedures except for the hybrid and exchange 
integrals which were interpolated from the tables 
of Hirschfelder and Linnett20 using Mulliken's 
approximation as an interpolation aid. The result
ing integrals probably are accurate to at least five 
figures. 

The quantitative results clearly support the quali
tative picture. The first natural orbital is bonding 
and the second antibonding as suggested. The 
absolute magnitude of the energies should be con
sidered in the light that the limiting energy of the 
one-electron functions at R = °° is — 0.5. The 
electron repulsion integrals (11(11) and (22|22) 
do indeed largely cancel the I/R term. Finally 
i?AA and Hu have slightly negative energies but 
still far from —1.0, the energy of the separated 
atoms, ^A and ^ i are thus neither strongly bond
ing nor strongly antibonding. For comparison the 
energy of the bonding function xi(l)xi(2) is 
— 1.1277IiJ and that of the antibonding function 
Xz(I) X2(2) is + 0.35130H in the Weinbaum case. 
I t is seen that over 60% of the total energy comes 
from the binding cross term, 2XK\IHKI. 

VIIL Conclusion 
We feel we have demonstrated that starting 

from a well-defined approximation to the hydrogen 
molecule wave function it is possible to separate it 
into independent orthogonal parts which have 
optimum characteristics associated with the names 
"atomic" and "ionic." Further analysis shows 
that physical observables which depend upon the 
square of the wave function then involve three 
well-defined parts, the third one being the atomic-
ionic cross-term which can be associated with 
covalent binding. Even for rather simple trial 
functions, the division is almost invariant to the 
choice of basis, and in the limit of using the two-
term truncated natural orbital expansion, it be-

(20) J. O. Hirschfelder and J. W. Linnett, J. Chem. Phys., 18, 130 
(1950). 

comes completely independent of the original 
basis. 

The final picture that results is a satisfying one 
in that it is directly capable of extension to the 
heteropolar case. In a subsequent publication 
we shall show that a quantity which bears resem
blance to electronegativity difference is a direct 
consequence of the treatment. Consequently we 
feel rather justified in thinking that the present 
description is of fundamental significance. The 
fact that we were led to it by a rather unsophisti
cated method should not be allowed to detract 
from the picture and it is our hope that it may be 
possible to find a more satisfying method of reach
ing the same result. 

The present description is closely related to 
several other semantic descriptions of binding in 
particular situations. We might, for example, 
have emphasized that our picture is that binding 
is a result of ionic-atomic resonance, although we 
prefer to avoid that term. From another point of 
view we have two hypothetical roughly non-bond
ing configurations, one of which is atomic and one 
ionic. The formation of the hydrogen molecule 
bond could then be described as an extreme example 
of a charge-transfer complex between two hydro
gen atoms. Finally the designation of SRA as 
"atomic" suggests that it may be worth consider
ing as an appropriate basis function for the em
bodiment of the popular "atoms-in-molecules" 
concept. 
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